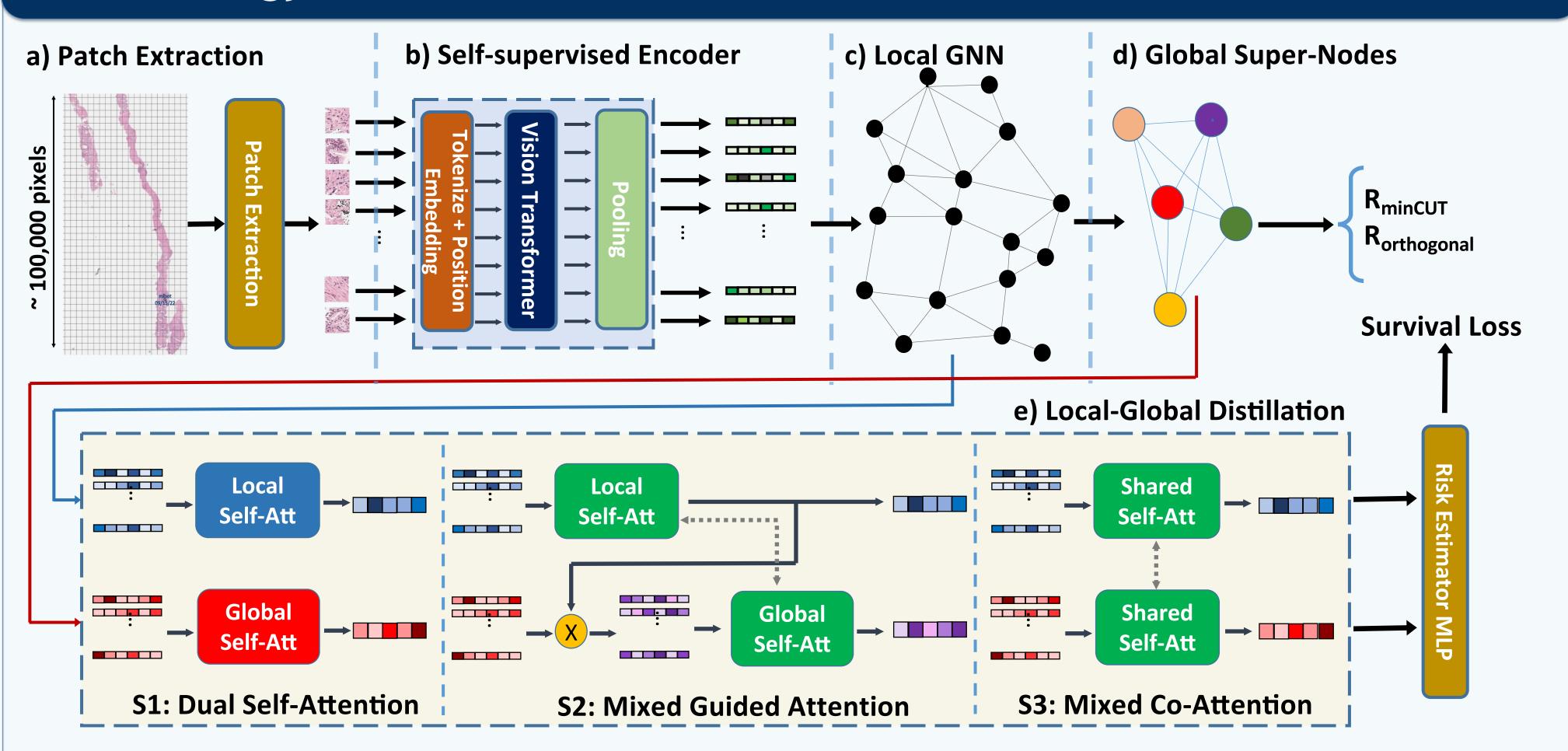
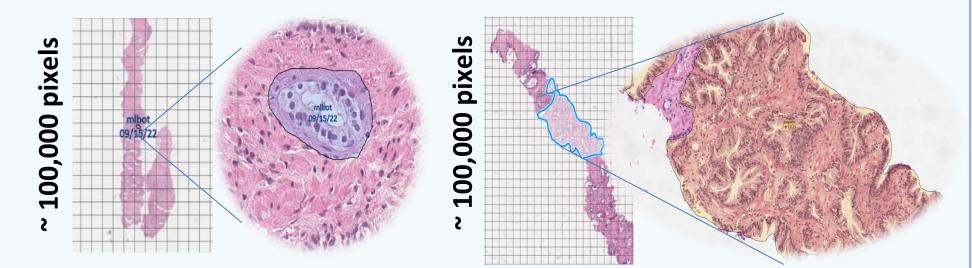
ALL-IN: <u>A Local GLobal Graph-based DIstillatioN</u> Model for Representation Learning of Gigapixel Histopathology Images With Application In Cancer Risk Assessment


<u>Puria Azadi¹,</u> Jonathan Suderman³, Ramin Ebrahim Nakhli², Katherine Rich², Maryam Asadi², Sonia Kung³, Htoo Zarni Oo³, Mira Keyes², Hossein Farahani², Calum MacAulay⁴, Larry Goldenberg³, Peter Black³, Ali Bashashati²

¹Department of Electrical and Computer Engineering - UBC, ²School of Biomedical Engineering - UBC, ³Vancouver Prostate Centre, ⁴BC Cancer Research Center

Risk Assessment:

- The holy grail application of machine learning in histopathology is providing predictive and prognostic information.
- Risk stratification is under-explored compared to grading and subtype classification.


Methodology:

Vancouver CoastalHealth

Challenges:

- Aggregating **global** and **local** features to link histopathology images and outcome.
- Modeling interactions at different scales as well as tissue heterogeneity
- Graph Neural Networks can model patch relations; however, most GNN-based risk prediction have limited nodes' receptive fields.

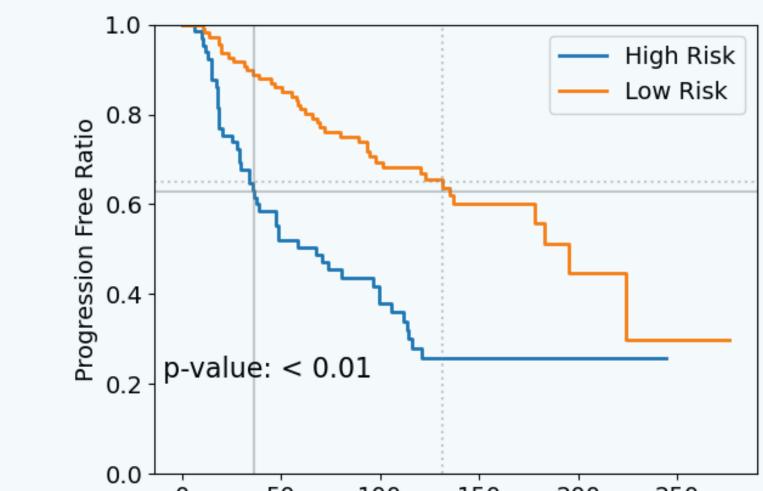
Sample of fine (left) and coarse (right) morphological feature

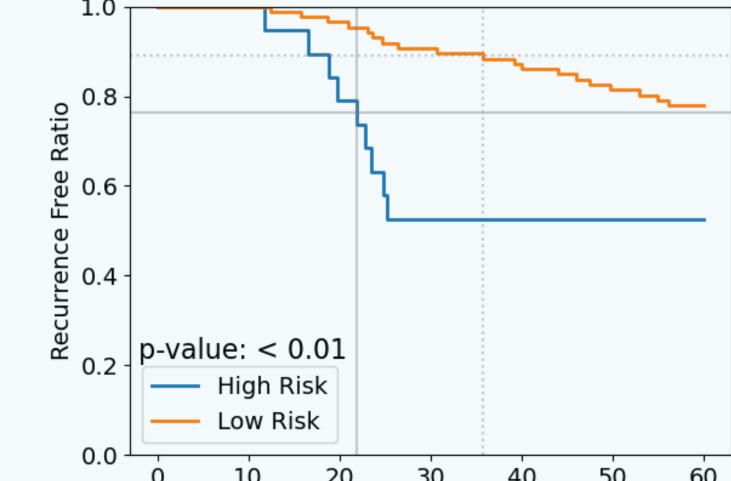
The overview of our proposed method. Steps are as follows:

- a) The input slide is tiled into **non-overlapping patches**.
- b) The patches are fed into a self-supervised encoder to extract embeddings.
- c) A graph is constructed, and the new local instance-level embeddings are obtained through the message-passing process.
- d) The **global context** representations in the form of **super-nodes** are extracted utilizing two unsupervised loss functions (R_{minCUT}, R_{orthognal}).
- e) The fine and coarse feature vectors are aggregated in the **distillation module** to extract representations for **both local and contextual** morphological features.

f) A multilayer Perceptron is deployed to estimate the risk using final resultant vectors.

Hazard Prediction and Patient Stratification Results:


Contributions:


- 1. Proposing ALL-IN: A Local GLobal Graphbased DistillatioN
- 2. ALL-IN is a novel graph-based model that extracts both local and global properties by identifying morphological super-nodes.
- 3. Introducing a fine-coarse feature distillation module with 3 various strategies to aggregate interactions at different scales.
- 4. Conducting an extensive study on the performance of our proposed model using two datasets.
- 5. Evaluating in two scenarios: risk prediction and patient stratification
- Our results demonstrates statistically significant stratification into risk groups with clinical utility.

Model	C-index		p-values 🗸		Low 🎝 - High个 Median Time		#Parameters		
	PCa-AS	PCa-BT	PCa-AS	Pca-BT	PCa-AS	PCa-BT			
Deep Set	0.495 ± 0.017	0.50 ± 0.0	0.837	0.912	67.78 - 71.87	24.62 - 24.89	329К		
AMIL	0.544 ± 0.06	0.533 ± 0.060	0.820	0.148	48.99 - 89.10	21.86 - 30.71	592K		
DGC	0.522 ± 0.113	0.572 ± 0.150	0.494	0.223	47.61 - 96.66	23.44 - 24.85	626K		
Patch-GCN	0.555 ± 0.059	0.541 ± 0.118	0.630	0.981	37.72 - 94.95	23.05 - 25.25	1,302K		
ALL-IN + DA (ours)	0.631 ± 0.058	0.596 ± 0.062	< 0.01	< 0.01	37.72 - 115.91	21.86 - 35.77	850K		
ALL-IN + MGA (ours)	0.632 ± 0.060	0.589 ± 0.074	< 0.01	< 0.01	47.61 - 101.39	21.86 - 35.77	653K		
ALL-IN + MCA (ours)	0.639 ± 0.048	0.600 ± 0.077	< 0.01	< 0.01	36.5 - 131.71	21.86 - 35.77	653K		
Comparison of our method against baselines and ablation study on policies									

Comparison of our method against baselines and ablation study on policies

Kaplan-Meier Curves:

with clinical utility.		0.0 0 50 100 150 200 250 Time (months) PCa-AS		0.0 0 10 20 30 40 50 60 Time (months) PCa-BT			
Ablatio	n Study	•				Summary:	
Modules			C-index		 We introduced a novel model, which utilize interactions at different scales for 		
Model	Local- node	Self-supervised encoder	Super node + Distillation	PCa-AS	PCa-BT	improved risk stratification.	
	\checkmark	X	X	0.584 ± 0.072	0.550 ± 0.109	 Our results suggest that the proposed model is capable of separating patients 	
Ours	\checkmark	\checkmark	X	0.622 ± 0.055 ↑	0.597 ± 0.045 ↑	into statistically significant risk groups with	
\checkmark	\checkmark	\checkmark	\checkmark	0.639 ± 0.048 ↑↑	0.600 ± 0.077 ↑↑	actionable clinical utility.	